
 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 19

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

An Empirical Study of Pentesting IOS 9 Applications

Sinan Ameen Noman and Haitham Ameen Noman

Abstract— The mobile has been changed since Apple has released

their first iPhone in 2007. Mobile applications have become more

powerful than ever, this evolution has created a sufficient range of

attacks that can be used on apps and grab a credential data from

users who starts making activities on their mobile devices while

on the go instead of using it on their own computers. This paper

sheds the light on pentesting tools and techniques that can be

conducted on iOS applications on a physical iDevice running iOS

9 rather than an emulator.

Index Term— Pentesting Tools, Pentesting Techniques, iOS 9

I. INTRODUCTION

 iOS is a mobile operating system created by Apple Inc. and

assigned exclusively to iDevices (iPhone, iPod, iPad, TV,

Apple Watch). iOS in a very simple way is an operating

system that runs iPad, iPhone and many other devices that is

worshiped by Apple. it’s Unix based operating system that is

derived from OS X and OS X shares its origin from the

Darwin foundation. iOS is not an open source, however parts

of the iOS typically taken from open source projects and need

to probably be given back due to license constrains such as

(CCTools, GDB, etc.) [1]. The only familiarity that iOS shares

is when the users use the system; pretty much feel like any

other Unix or Linux based system. All iOS devices are

powered by processors based on ARM Architecture [2]. The

ARM architecture is very different from X86 family which is

used on PCs. The ARM architecture has its own assembly

language, API’s, Functions and arguments. Apple pushes

major iOS update to users every year via iTunes or over the

air.

 The latest update of iOS is 9.2 that has been adopted by 50%

of iDevices users while others are still using iOS 8 or older

versions. Nowadays, Mobile phones have become a ubiquitous

portable device used in our lives and according to Statista [3],

there are more than 1.5 million approved apps available in the

App Store. App Store provides a large variety of different

applications include some free and others are paid apps. IOS

Developers use Apple Xcode IDE for developing an

application written in Objective-C [4] or Swift [5]

programming language for iOS. With Xcode developers can

test their application within iOS simulator that is already

embedded in Xcode. iOS simulator compiles application into a

low level language (local native) which is totally different than

android emulator that is used to compile the application into

ARM instructions. To test an application on real device,

developers have to subscribe to iOS developer program that

costs 100$/year because iOS devices is only allowed to run

Apple signed applications. Developers need to read and follow

Apple Store Guidelines [7] to ensure that their application will

successfully submitted into Apple Store. Applications can be

submitted into the App Store by using iTunes Connect [8] and

developers should wait for Apple App Review “reviewing

every app based on app reliability, and performance” that is

usual took 8 days according to AppReviewTimes [9]. Jay

Freeman (also known as “Saurik”) [10] has created a GUI

application called Cydia [11] that is used to grant root access

[12] into iOS device and allow developers to install any

packages, applications, themes, and extensions without being

signed/reviewed by Apple. Apple claims that jailbreaking an

iOS device will remove security layers that are designed to

protect user’s personal information and cause instability,

battery drain, and other issues [13].

 This paper will provide an overview of iOS security

mechanism, techniques and tools that can be used to pentest an

iOS app on iOS 9. The remainder of this paper is organized as

follows. Section 2 describes iOS security measures. Section 3

presents the tools and techniques that the pentester needs in

order to explore and modify iOS application. Finally, Section

4 presents our conclusions.

II. iOS Security

 The security architecture of iOS is pretty much layered in

such a way that is actually very difficult to break through it

[1]. There is an encryption happening which starts right from

the hardware level extends into the operating system, file

system and applications. Also there are things such as data

protection using encryption, application sandboxes, code

signing and bunch of other things.

 The whole boot process is very critical and important in

operating systems. In PC’s world a lot of boot levels (Trojan,

Rootkit, etc.) have been around for quite some time which

compromise the integrity of the operating system. Apple has

come up with a solution to avoid PC’s boot problems by

creating a Secure Boot Chain that is loaded in a protected area

inside the memory and cannot be tampered. Secure Boot

Chain consists of (Boot Rom, Low Level Boot Loader, iBoot,

and iOS kernel).

 The Boot Rom contains Apple Root Certificate Authority

“CA”, the Device Unique ID “UID” key, and Device Group

ID key “GID”. The Boot Rom will verify the signature of low

level boot loader “LLB” before loading and executing it and

the LLB verification happens using the Apple Root CA key

which is currently in the Boot Rom, and this will ensure that

LLB is the one that sent by Apple. Now, the LLB intern boot

the second stage of the boot loader called “iBoot” that will

verify the iBoot to ensure that is signed by Apple. Finally, the

iBoot will boot up the iOS kernel and it will verify again that

the iOS kernel has been signed successfully by Apple. Fig.1.

illustrates the secure boot chain of iOS devices.

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 20

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

 The kernel is loaded into a protected area of memory to

thwart it from being overwritten by apps or other parts of the

OS and it is used to load up all different operating system’s

components and processes. The kernel will verify that all

applications that are running are signed by Apple and this

process called “Code signing” as it shown in Fig.2.

 The application level security does not end at code signing;

Applications itself are isolated using sandboxes, that means

“Application 1“cannot access the data of “Application 2”, run

time injection of one application into other or probably

reading the other application directories is not allowed and not

possible. Fig.3. illustrates iOS application sandboxing.

All applications are running under user “Mobile” and all

system processes are running under user “Root” as it shown in

Fig.4.

 In addition to the system security, Apple offers File Data

Protection and encryption to their iOS devices. File data

protection is available for devices that offers hardware

encryption starting from iPhone3GS or later, iPod touch (3rd

generation or later), and all iPad models. The file data

protection is used to protect data and files even when the

iDevice has been stolen or compromised by generating 256-bit

key for every file on the system. This service is enabled by

default in iOS and users should enable it by enable a Touch ID

which is fingering sensing system that makes secure access to

the iOS device in a fast and easy way or Passcode on the iOS

device. The passcode/Touch ID are integrated with UID to

protect the iOS device from any password attack by using an

iteration design that makes as it shown in Fig.5.

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 21

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

 Most of the encryption techniques are depends on UID and

GID Keys that is embedded into hardware. Apple claims that

they don’t know the UID and GID keys nor their suppliers.

Every device could end up having a different encryption key

which is used for file and data encryption that has different

things associated with such as (Keychain, KeyBags, File based

encryption).

Apple also provide support for secure data delivery over the

network and it supports “SSL, TLS, VPN, Wi-Fi (EAP-TLS,

PEAP, TTLS, etc.).

 These restrictions have led Jay Freeman to find

vulnerabilities in iOS that will lead to install application called

Cydia “Jailbreak “that is used to provide freedom from all of

these restrictions.

III. Pentration Test

 In order to build an iOS pentesting environment, we need to

Jailbreak an iOS device to get off Apple security restrictions to

achieve reliable results.

This section will focus on iOS application instead of iOS

software and we need to install a set of tools that are not

signed by Apple and jailbreak an iOS device build our

pentesting environment. To perform pentesting we will use

iPad Air with iOS 9.0.2.

IV. Jailbreak

 Every iOS version has its own jailbreak tool because apple

used to patch a security hole that permits application to bypass

code signing whenever they release a new update. Jailbreak

tools for the iOS devices have always been free and users who

are looking for a Jailbreak should be aware from scam

websites who claims they offer a Jailbreak tool.

 In order to pentest iOS application, we need to perform a

jailbreak tool. This paper will use iPad Air running iOS 9.0.2

along with Pangu untethered Jailbreak tool for iOS 9 [14]. An

untethered jailbreak tool, meaning that the iDevice does not

require to be connected to a computer each time when the

device boot. Jailbreaking an iOS device is quite easy;

download Pangu tool, install it on computer, connect your

iDevice to computer using the cable that comes with the

device, and follow the steps that Pangu tool prompt. Fig.6.

illustrates a screenshot of Pangu tool running on Mac OS X.

After installing Cydia, the pentester will see a new app icon on

the jailbroken device called Cydia; open the app and choose

Developer Mode.

V. Pentration Test Tools

 There are many unsigned Cydia apps, tweaks and packages

that could help the pentester’s job easy and enable them to

work in an efficient way to do penetration test. This section

will illustrate the pentesting tools were deemed so essential to

be used in penetration iOS applications and can be listed

hereunder.

OpenSSH: This tool is a console package Cydia tool that is

used to secure remote access between an iOS device and a

computer. The pentester should change the default root

password of the iOS which is “alpine” to prevent the

possibility of unsavory people remotely logging into device

[15].

IMazing: This tool is the Swiss Army Knife of iOS devices

that is used to explore (Apps, Messages, Contacts, Photo, Plist

Files, etc.) in a simple and easy way instead of using iTunes.

This tool is available on mac OS X and Windows operating

systems [16].

TextWrangler: This tool is an open source text editor mac

OS X tool that help the pentester to read/modify Plist [17].

Adv-cmds: This tool is a console package Cydia tool that will

help the pentester to use set of advanced commands (ps aux,

kill, etc.) when they are connected to iOS device via

OpenSSH [18].

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 22

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

House Arrest Fix: This Cydia Tweak will allow the pentester

to access app containers and explore the iOS device via USB

on iOS 8.3 or later [19].

Cyberduck: This is an FTP, SFTP browsing tool that allow

the pentester to browse the content of the iOS device easily

and copy any type of file inside the iOS with the ability to set

permission on files [20].

Keychain Dumper: This tool helps the pentester to dump

“Internet Password” or “Generic Passwords” only [21].

VI. Play Around with PLIST Files

 Plist is stand for Property List. Every iOS, OS X has its own

Plist files that are often used to store user’s settings,

application configuration and sometimes there are applications

that used to store clear text sessions, usernames and

passwords. Pentester may escalate the privilege to login into

application as an administrator by changing Plist entry

“Administrator =0 “to “Administrator=1” during the

penetration test and open the app to see that your account has

been escalated to administrator privilege.

 iOS applications store Plist files inside the app container

[Developer/Library/Preferences] and the pentester cannot

access these files even if the device was jailbroken on iOS 9

and need to install the following tweak “House Arrest Fix “in

order to access these Plist files. The extension of Plist file is

“Plist”. IMazing is a tool that could help us in exploring and

modifying Plist files. Below is an example of how to pentest

an iOS application by modify Plist file that is associated with

the application itself. We will demonstrate how to pentest an

iPad game “2048” that stores the game score in Plist file under

applications home directory by using IMazing tool. Fig.7.
illustrates a screenshot of “2048” game in the Apple Store.

Fig. 7. Screenshot of “2048” game from the App Store

The Pentester should download and install IMazing tool and

connect the iOS device to the computer via USB to start

explore 2048 app and navigate through 2048 Developer —

>Library —> Preferences Folder.

Fig.8. illustrates a screenshot of how apps are looking when

the pentester open IMazing app

 The pentester should get a copy of Plist file into the desktop

to see what kind of data can be by using a text editor such as

TextWrangler as it shown in Fig.9.

 In our scenario, we will edit the high score of the game

“2048” and then copy it back from desktop to the app

container in order to apply the modification that we have

made. The result of the modification can be shown in the

Fig.10.

VII. Dumping Keychain

 Keychain is a folder that implements SQLite database holds

all passwords, identities, encryption keys, private keys, and

certificates. This folder is used to be encrypted with a

hardware specific key that is unique per device and cannot be

extracted from the iOS device itself (AES 128 bit AES

Algorithm) and that means that these data cannot be moved

into another device. iOS applications store the user’s sensitive

information in the keychain to issue clear authentication and to

not to ask the user every time for login. iOS applications use

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 23

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

the keychain API’s to write and read data from and to the

Keychain. The pentester can access the Keychain database at

(/private/var/Keychains). Keychain is a great solution for

developers to store sensitive data in an encrypted way instead

of storing it as a plaintext in Plist file. All keychain items are

saved in 4 tables (Cert, Genp, Inet, keys) as it shown in the

Fig.11.

 Cert table contains certificates, Genp table contains general

passwords, Inet table contains internet passwords and finally

keys contains keys and digital identity keychain items.

 The pentester will need to use Keychain Dumper tool in

order to extract all tables and examining the tables contents.

This tool can be added easily into the iOS device by using an

easy FTP browsing tool. In our example we are going to use

Cyberduck tool that is available on OS X and Windows

operating systems to copy the Keychain Dumper tool in iOS

device as it shown in Fig.12.

 The pentester should now change the file permission of

“Keychain_Dumper” file into (777) in order to make the file

able to (Read / Write /Modify) as it shown in the Fig.13.

 After the keychain_dumper has been copied and permission

has been set correctly, the pentester should open the Terminal

application and run the following command

“./keychain_dumper” in order to extract all keychain sensitive

data. As we can see from Fig.13., the service “Airport” which

belongs to a Wi-Fi password can be shown as a plaintext,

while other passwords are encrypted as depicted in Fig.14.

VIII. CONCLUSION

 This paper has shed the light on iOS security measures that

are used to protect applications from being modified and these

data cannot be explored or modified without jailbreaking the

iOS device. Jailbreaking iOS device will remove security

layers that are designed to protect user’s personal information

REFERENCES
[1] "IOS 9.0 - Source." IOS 9.0 - Source. Accessed January 16, 2016.

http://opensource.apple.com/release/ios-90/.
[2] "ARM Processor Architecture." - ARM.Accessed January 16,

2016. http://www.arm.com/products/processors/instruction-set-

architectures/
[3] "Number of Apps Available in Leading App Stores 2015 |

Statistic." Statista. Accessed January 16, 2016.

http://www.statista.com/statistics/276623/number-of-apps-
available-in-leading-app-stores/

[4] "Programming with Objective-C." About Objective-C. Accessed

January 16, 2016.
https://developer.apple.com/library/mac/documentation/Cocoa/Con

ceptual/ProgrammingWithObjectiveC/Introduction/Introduction.ht

ml
[5] "The Swift Programming Language (Swift 2.1): About Swift." The

Swift Programming Language (Swift 2.1): About Swift. Accessed

January 16,2016.
[6] https://developer.apple.com/library/ios/documentation/Swift/Conce

ptual/Swift_Programming_Language/

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:16 No:02 24

 165202-9494-IJECS-IJENS © April 2016 IJENS

I J E N S

[7] “App Store Review Guidelines." - Apple Developer. Accessed
January 16, 2016. https://developer.apple.com/app-

store/review/guidelines/#legal-requirements

[8] "App Distribution Guide." Uploading Your App to ITunes

Connect. Accessed January 16, 2016.

https://developer.apple.com/library/ios/documentation/IDEs/Conce

ptual/AppDistributionGuide/UploadingYourApptoiTunesConnect/
UploadingYourApptoiTunesConnect.html#//Apple_ref/doc/uid/TP

40012582-CH36-SW2

[9] "Average App Store Review Times." Average App Store Review
Times. Accessed January 16, 2016. http://appreviewtimes.com

[10] Jay Freeman (Saurik). Accessed January 16, 2016.

http://www.saurik.com
[11] "Cydia IOS App." Cydia. Accessed January 16, 2016.

https://cydia.saurik.com

[12] What Is Root? -- Definition by The Linux Information Project
(LINFO). Accessed January 16, 2016.

http://www.linfo.org/root.html.

[13] "Apple." Unauthorized Modification of IOS Can Cause Security
Vulnerabilities, Instability, Shortened Battery Life, and Other

Issues. Accessed January 16, 2016. https://support.apple.com/en-

us/HT201954.

[14] "IOS Security Guide." 2015. Accessed January16, 2016.

http://www.apple.com/business/docs/iOS_Security_Guide.pdf

[15] "PanGu IOS 9 Jailbreak Tool." PanGu. Accessed January 16, 2016.
http://en.pangu.io

[16] "OpenSSH · Cydia." Accessed January 16, 2016.

https://cydia.saurik.com/openssh.html.
[17] "IMazing |iPhone, IPad & IPod Manager." IMazing. Accessed

January 16, 2016. https://imazing.com.

[18] “Bare Bones Software | TextWrangler." Bare Bones Software |
TextWrangler. Accessed January 16, 2016. http://goo.gl/gA3tuV

[19] “Adv-cmds · Cydia. Accessed January 16, 2016.

http://cydia.saurik.com/package/adv-cmds/
[20] House Arrest Fix · Cydia. Accessed January 16, 2016.

http://cydia.saurik.com/package/com.npupyshev.mobile.house-

arrest/
[21] "Cyberduck |Libre FTP, SFTP Browser." Cyberduck. Accessed

January 16, 2016. https://cyberduck.io/?l=en.

[22] "Keychain Dumper." GitHub. Accessed January 16, 2016.

https://github.com/ptoomey3/Keychain-Dumper

http://appreviewtimes.com/
http://www.saurik.com/
https://cydia.saurik.com/
http://www.linfo.org/root.html
https://support.apple.com/en-us/HT201954
https://support.apple.com/en-us/HT201954
http://en.pangu.io/
https://cydia.saurik.com/openssh.html
https://imazing.com/
http://goo.gl/gA3tuV
http://cydia.saurik.com/package/com.npupyshev.mobile.house-arrest/
http://cydia.saurik.com/package/com.npupyshev.mobile.house-arrest/
https://cyberduck.io/?l=en
https://github.com/ptoomey3/Keychain-Dumper

