Transferred Demand Forecast for Regional Passenger Rail Transport

S. W. Pessanha, C. V. C. Rocha, S. L. Issomura, V. B. G. Campos, R. A. M. Bandeira

Abstract—The purpose of this article is to present a methodology to develop a model to estimate transferred demand to passenger rail transport systems in regional or semi-urban links, with pendulous feature trips, i.e. home x work and home x school trips. A literature review was carried out to understand demand modeling on rail systems in order to identify models, variables and techniques used to estimate transferred demand. From the knowledge of the process to be developed, Stated Preference, Structured Pair-wise Comparison (SPC) process and Multimodal Logit Model methods were used, using Biogeme software for results analysis. Transferred demand forecast methodology was able to measure demand behavior when passenger rail transport was proposed to link regions, thereby expressing more reliable demand behavior.

Index Term--Demand forecast, passenger train, transferred demand

I. INTRODUCTION

Transport demand is important to adjust transport needs to region development. Improvement in transportation can be achieved through new systems implementation or improving existing ones. According to [1], transportation planning aims to define actions or strategies to suit transport supply with existing and future demand.

Historically, according to [2] Urban Transportation Planning Process originated from Detroit (1953-55) and Chicago (1955-61) urban transportation studies, in a research conducted by Mitchell and Rapkin in 1954. Transportation and Traffic Planning becomes increasingly necessary in nowadays society. According to [3], traffic, sustainable mobility, air and noise pollution and energy consumption issues are taken into consideration when Urban Planning and Public Management concepts are defined.

Transport planning and transport demand management includes several strategies that influence traveler’s behavior in transportation choice for his or her trip. According to [4], it is important to understand the factors that affect such behavior. [5] mentions that the estimative amount of trips, in present and at future date, is an important part of transportation planning process. Still, according to Campos [1], this estimative number will be used as a parameter for decision making over the most appropriate actions to meet each region needs.

Also according to [1], transferred demand is consequence of travel requirement, in order to perform some activity, and much of this demand is concentrated at peak hours. This demand is formed by routine travelers who performs the home-work / school (pendular movements), constituting the majority of demand and more impactful on transportation.

A. Pendular Movements Importance

According to [6] pendular or pendular migration process is linked to one of the traditional research lines of Urban Geography. Information about home-work / school trips is an important reference for urbanization processes and urban expansion analysis. The authors report that the movements today are occurring at increasing distances between traveler’s origin and destination.

[6] and [7] analyzed migratory movements and reported amount and distance increase, regarding to pendular movements, which are observed in many cities of the world. The main cause would be transportation system improvement, which enables further distances traveled daily, besides lack of coordinated policies that do not limit or do not consider, for planning purposes, distance between home-work.

[8], who studied pendular and migration movements in Rio de Janeiro, state that intense migration movements in recent decades in this city were "responsible for population and urbanization spatial redistribution processes, contributing to intra-state migration significance in different regional areas."

[9], in 2010’s census, provides Brazilian population displacement data about school and work destinations. In school destination cases, an amount of “59.6 million people attending school or day care, 7.3% (about 4 million) did not study in the same town where they lived”, i.e. travel intercity to reach their destination. The largest student population recorded, that made this type of trip is in Brazil southeast region, mostly in São Paulo.

In work destination cases, from the amount of 86 million people “employed” in 2010, 11.8% (10,100,000) of workers were intercity travelers. Other 2010’s census information was about travel time between home and work - for all travelers (intercity or not). A total of “32.2 million people (52.2% of total workers employed outside their homes) took six to 30
minutes to get to work in 2010 and 7.0 million (11.4%) took over an hour."

According to [10] pendular movements are also at economic and social life production and reproduction basis, since it is through them that workers and students attend daily to their place of work or study, production and training spaces.

In 2015, IBGE conducted a study called "Brazilian Population Arrangements and Urban concentrations" [11], which urbanization in the country and integration between municipalities were studied. In this study, it is stated that population pendular movements happen when residential urban spaces far from work and study sites. Thus, population movements contribute to strong interactions between small and medium-sized centers.

As a result, 294 populational arrangements formed by 938 municipalities were identified in Brazil, and 7.4 million people are in pendular movement between neighbors municipalities, most of them performed in Southeast Brazil, where there are 112 municipalities which establish an integration relationship with each other.

It was concluded that the pendular movements between cities, more than meeting travelers needs on their travel purposes (study or work), are responsible for urban spatial redistribution processes, influence positively city interaction in a regional context and are important subjects to study.

B. Brazilian Current Scenario

Since 1997, a concern about Passenger rail transport Systems under Technical-Economic Evaluation from Regional Interest was pointed, when a governmental project to recover rail cargo sector mentioned the high level of idleness in most of the Brazilian rail network. So, this availability should be conducive to investment in passenger rail transport over regional distances, knowing that this was already a reality found in many developed countries [12]. In 2003, The Railways Revitalization Plan was launched, where "Passenger Rail Transport Redemption Program" and which initially indicated 14 priority tracks that could promote regional, social and tourism services [13].

These studies aim railways repair for regional connections, with integration, expansion, modernization and re-use of rail transport modal matrix projects, in order to improve population's quality of life in urban centers. Also, these studies would generate employment and income, tourism development and railway heritage preservation for tourist purposes; promoting regional integration, projects and services development along the railway and railway idle reduction; promoting connection by high-speed trains between Rio de Janeiro, São Paulo and Campinas cities and between Brasilia and Goiânia city. [13]

According to [14] in 2011/2012, availability studies were developed, including the following rail track sections: Pelotas - Rio Grande, in Rio Grande do Sul state, Conceição da Feira - Salvador - Alagoinhas - Feira de Santana, Bahia state, Teresina / PI - Codó / MA and San Luís - Itapeucuru Mirim, in Maranhão state. The studies about Caxias do Sul to Bento Gonçalves, in Rio Grande do Sul state and Londrina to Maringá, in Parana state were finished.

Therefore, focusing on regional rail transport from Brazilian current scenario, the methodology to estimate transferred demand was developed for passenger rail transport systems, in regional or semi-urban links, considering pendular trips.

For this purpose, influence factors that influence the choice of a transportation mode were analyzed and methods to estimate this type of demand based on a literature review was summarized in section 2. The methodology is presented in section 3 and its application is shown in section 4.

II. DEMAND FORECAST MODELS

The focus of this article includes pendular movements, i.e. home - work and home - school but considering other transportation modes, when there is a new transportation mode implementation in a particular region, that is in fact, transferred demand from existing modes to this new proposal - in this case, the regional passenger rail transport.

In general, there are two methods to estimate demand: conventional models or behavioral models. According to [1] conventional models take into account data whose observations were aggregated (population, employment, income, etc.). Behavioral models, in a disaggregated way, shape demand according to individual behavior, subjective factors that are relate to individual attitudes and perceptions, thus making it more difficult modeling to measure, if compared to traditional approach [15].

Procedures used for this type of analysis, articles, technical notes, papers and of government documents from 1997 to 2014 in several countries in the world were reviewed to develop transferred demand forecast methodology [16]. As a result of this research, variables, information gathering processes, as well as evaluation methods and software used for analysis were identified. Analyzing work developed in Europe, it is observed that there are many companies and researchers relevant publications in passenger demand area. Each work takes into account not only variables and characteristics in common with other studies, but also each application characteristics and each feature importance.

23 works were reviewed: [17] [18] [19] [20] [21] [22] [23] [24] [25] [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] and [39].

In the analysis it was found that data gathering for demand forecast is usually performed in three ways: obtaining historical data for transportation modes available in the region, revealed preference survey and Stated Preference Survey.

For transferred demand forecast, which measures the potential appeal to users who use other competing transportation modes, behavioral models should be used, whose data can be obtained from Revealed Preference researches, travelers revealed the choices made to perform a routine trip or the trip they were doing. Trip data such as purpose, transportation mode, etc. and traveler data such age, income, etc could be included in the research. Stated Preference Survey aimed to measure the traveler choice from a created scenario option, usually by comparing existing modes with a new modal proposal. Information about a transportation
mode not yet been implemented was provided, such as travel time, speed etc where travelers should decide which modal they prefer to make the trip [36], [22], [30].

Generally authors use two models on demand forecast procedures: regression model and logit models. For logit models, which are based on behavioral analysis, authors use various processes to determine the utility function, Tree-logit model.

It is also observed that most authors use statistical procedures to test data reliability. Student's t-tests, Maximum Likelihood, error correction model (ECM) are used.

Some authors use a proper model for demand modeling and some software. Among those used are the Alogit and Stata, which are used in Brazilian studies [37], [38], [39].

Among variables used by the authors, who took into account travel characteristics, those most presented in researches are: services attendance, travel time and cost, always analyzing according to Origin and Destination displacement and travel purpose. [36], [30].

For "services attendance" variable it was considered, for each transportation mode, the frequency of services, either by time or headway, or even indicating the number of cars available to carry out the trips. Delays in trip attendance are directly related to travel time - in this case outside the composition - which implies in longer waiting time.

For "travel time" variable, it is not only considered the time spent by the traveler inside the transportation mode but some authors also refer to total travel time, accounting for the access time and egress of the stations, connections times cases carried out by buses, trains and planes, in addition to the waiting time. Travel and transportation mode characteristics such as the distance between Origin and Destination, speed and amount of required transfers directly influence travel time.

For "travel costs" variable, as travel time, it is considered not only the ticket or fuel costs, in private cars case, but also the station access and egress costs and fees paid such as insurance, check-in, etc. Some variables related to travel cost were not taken into account by most of the works analyzed: type of rate, the chosen class and who is responsible for paying the fare or fuel.

Regarding to the variables that take into account the travelers characteristics, most of works presented: gross domestic product (GDP) data/ income, per capita GDP / per capita income, travelers age and individual car ownership. [30] analyzed demand changes and observed that improving socioeconomic conditions of a particular area, increases transportation demand [36], [22].

[26] assure that passengers’s individual characteristics, such as age, income, education, car ownership / availability may influence the transportation mode choice, in addition to the most common features in transportation choice, such as activity location o, travel duration and purpose, activities attendance, Origin-Destination features.

Regarding to "car ownership" variable, it is clear that the majority of public transport users have a car, but many choose public transport in Europe. Some authors consider that many passengers are left at the public transport station by another person in a private car. In surveys, other information about trips attendance and public transport use frequency can be also found.

Some demographic factors were taken into consideration in the analyzed works, such as land use data, master plan and population density [36], [22].

The determining factors for demand forecast may vary from city to city and country to country, as well as short and long term demand forecast process have different elasticities [31]. According to [28], the discrete choice models for transportation mode choice are the key to inform demand forecast model.

Improvements in existing transport systems tend to influence in Stated Preference Survey. An example would be the highways post privatization trend, which can bring benefits to road transport.

III. RESEARCH MAIN GOAL DEVELOPMENT

One of the conclusions from previous section was that discrete choice models for transportation mode choice are the most used to a not yet implemented transportation mode demand forecast.

Thus, the proposed methodology for demand forecast was based on Stated Preference techniques and divided into 5 stages, given below:

01 - Initial research

- Knowledge of regional characteristics, particular population groups, etc.

02 - Research and analysis of regional characteristics

- Choice of quality factors in transport
- The factors are based on the literature review and in step 01
- Analysis of the results using SPC, Structured Pairwise Comparison

03 - Preference survey declared

- 01 questionnaire from the result of step 02 and application

04 - Analysys of results

- Definition of utility functions and data analysis
- Multinomial logit models
- Software Biogeme

05 - Estimate of the transferred demand

- Transferred demand definition

Fig. 1. Section III steps represented in blocks diagram

STEP 01: Initial research aiming to identify regional characteristics, existing transport and infrastructure modes in the region as well as particular population groups where the methodology can be applied.

STEP 02: Quality factors choice in the most representative transportation mode, through questionnaires where
respondents order and analyze pairwise the presented characteristics. The factors listed should be based on literature reviews and features observed in step 01. It is used the simplified AHP process, called SPC (Structured Pairwise Comparison) for result analysis.

STEP 03: After identifying local demand preference regarding to quality factors in transportation, Stated Preference Survey is developed, according to the following detailed steps, using the most significant parameters indicated in the previous survey.

STEP 04: According to Stated Preference Survey data, Utility functions are defined and collected data are analyzed, by using and developing modeling as Multinomial Logit models, using Biogeme software to analyze the results.

STEP 05: transferred demand is defined by applying previous results analysis regional demand.

A. Step 01: Initial Search

It consists in collecting general information and aims to know the region context, in which the proposed methodology will be applied. In addition to regional characteristics should be known transportation modes, infrastructure conditions available and particularities of each mode. The more information obtained at this early stage, the greater the knowledge of this region and consequently demand behavior tends to be measured in a realistic way.

B. Step 02: Regional Features Research And Analysis

It aims to offer research applicability in any region and in any group of people. Each region has behavior, when only demand forecast models with variables based on literature reviews are proposed, it is believed that the resulting model cannot translate reliably this demand choices.

Another motivation to enter this initial step was the difference between demand forecast models used throughout the world in comparison to Brazilian models. In international models, many studies considered special tickets, first class, indicating consideration of comfort in modal values.

According to [40], it is of fundamental to identify the transportation mode choice criteria for a given trip. The opinion of those who use a transportation mode between two points is not only important to know population preferences, as well as to guide a better operational and improvement management, and implementation of new services in micro planning and macro planning context.

Regarding to Passenger Transportation System, the performance of this service is directly related to user expectations when he or she chooses this or that option. According to [41] the parameters chosen by users can be characterized as a transport service quality indicator.

According to various authors’ studies analysis, performed by [16], the quality indicators most used in the literature, which can affect demand behavior and should be considered in transport planning modeling. "Security", "Reliability", "Comfort", "Travel time" and "Cost of the trip" factors are indicated by most authors as quality factors that have the greatest influence on transport user’s behavior.

According to [42] "security” factor may be related to the number of accidents in a transportation mode, and also involves road and maintenance conditions, traffic systems, operating conditions. However, according to [41], [43] and [44] this item is related to both driver conduction and to robberies and crimes risk in the arrivals and disembarkation facilities.

The "reliability" standard may be related to services regular performance, in a reliable and correct way, according to [43], and the fulfillment of services regularity, itineraries and information to users, according to [41].

According to [41] the "comfort" standard may be related to many qualitative aspects of subjective evaluation, linked to occupancy conditions, ventilation conditions, noise, car features like doors width, etc.

These quality factors regarding to transport are the ones that influence transportation mode choice. Peer to peer analysis and SPC method was developed from Analytical Hierarchy Process (AHP), and is an example of advanced model, developed by Thomas Saaty [45], [46] and [47]. It is a tool for decision analysis and multiple criteria planning, simplifying the decision-making process. This technique is based on choices comparison, pairwise, identifying thus the criteria in order of importance and stipulating weights for each.

SPC method has been developed to reduce weight process complexity, [48], [49] and [50] proposed a new AHP formulation, with structured peer to peer comparison process, wherein a judgment scale with 1-9 values, is compared to "strong" or "weak" importance of relations.

Thus, applying the research in the region to be studied, most important transport quality factors are identified, and Stated Preference Survey can be started.

Each criteria Standardized values represent their importance in relation to the user choice, so the higher the weight, the greater the quality factor importance in relation to other listed and vice versa. Thus, it can conclude that in a given group of respondents, which quality factors influence over decision-making in relation to transportation mode.

C. Step 03: Stated Preference Survey

After identifying local demand preference of in relation to transport characteristics, Stated Preference Survey is developed using the most significant parameters indicated in previous survey and rail system passenger characteristics, keeping in mind the objective of this research, which is the knowledge of transferred demand when a passenger rail system is implemented on regional or semi-urban links, with pendular trips, i.e. home x work and home x school trips.

1) Population And Sample Choice

Knowing that the sample to carry out the Stated Preference Survey can be taken directly from a pre-selected group and that it is recommended a minimum of 75 people for each interest group, the selected sample for this survey realization is routine travelers directly affected by a railway which will possibly be implemented, as bus trips groups, car and in some regions, air transport. The sample groups should be selected after transportation options existing in the region are already
identified.

In addition to existing transportation modes identification, it is important to know all transportation options characteristics, such as service characteristics, time and travel costs, standards and comfort options offered, safety standard and service reliability, if there are particular characteristics of each region, such as providing charter bus from one location to another.

2) Preparing the Quiz

The questionnaire draft begins determining which factors are important for the region and what is the research purpose, for example, interest in a new demand caused by a future transportation mode implementation.

3) Attributes Definition And Choices Levels

According to author’s guidelines, it is recommended a maximum of four attributes and their levels, creating a number of combinations between 9 to 16 scenarios.

An important aspect for transferred demand forecast research case, is that when considering which transportation mode and which attributes will vary, include possible investments, changes and improvements in existing transport, short or medium / long term implementation [54]. Thus, if the transportation modes in the region are already established and the railroad project implementation is planned in the short term, existing modes do not suffer variation in values, thereby reducing the required number of scenarios, i.e., resulting in preferably mere transfer to new modal implanted, in this case, the railway.

If the new railroad characteristics are unknown, the attributes levels can be set based on the existing modes. For quantitative attributes, continuous levels are generally employed, uniformly spaced between two extremes. For qualitative attributes, levels are intended to represent relevant settings for each attribute.

Then, two quantitative attributes are defined, each of these with three levels, resulting in nine scenarios, which provides sufficient amount of search scenarios for a good experiment. Regarding qualitative factors in transport, it is suggested that only one is used, this being defined according to the initial research. If the qualitative attribute between the scenarios having three levels of variation search result in more combinations, resulting in 27 scenarios requires alternative to reduce the number of scenarios. It is therefore suggested that this attribute compose more than one choice for survey option, avoiding the increased number of scenarios.

Defining two quantitative attributes and one qualitative attribute, entering as another option to be chosen, it excludes the need for fractional factorial designs, or research division into blocks or any other method to decrease scenarios. Also it is proposed the non-application of technical removal of all dominant and dominated alternatives, offering greater reliability to collected data in the interviews.

4) Presentation of Scenarios for Respondents

The scenarios presented to respondents should have a discrete choice form, when the respondent only choose an alternative that suits him or herself, in the midst of a set of alternatives presented. It is the most comfortable and simple way for the respondent.

5) Research Method Definition

The Stated Preference Survey should be made face to face, as recommended by the authors. Thus, the respondent can better understand scenarios, choice procedure and also offer great accuracy and little loss of information.

6) Design and Survey Test

It is recommended to carry out a small test within a small group of respondents belonging to the interview interest group. In transferred demand research case, routine users of a transportation mode that will be directly affected by new railways implementation. It is recommended then to apply the test in 6 to 12 people.

7) Main Search And Data Collection

It is useful when the data to be collected in Stated Preference Survey include, in addition to the choices of respondents, data that characterize the sample and / or which may be important a possible transfer identification, as data services or forms of differentiated payment where respondents only mark with an X, the alternatives that best suit them.

Among other data such as trip origin and destination, travel reason, travel frequency, transportation mode in which the traveler makes the trip usually, if the traveler has or not an automobile, income, education level, which paid the passage of the traveler, educational institution attended, student groups, gender and age of the traveler is also collected.

From the collection of data, may analyze the new transport option and make statistical tests, according to each study purpose.

D. Step 04: Results Analysis

For result analysis, the use of Multinomial Logit Model was defined using the Biogeme, software designed to analyze data with discrete choice models in general and random utility models in particular. Bierlaire Optimization Toolbox for GEV Model Estimation (BIOGEME) is a free software based on logit models, including Logit Multinomial using the maximum likelihood estimation method to forecast various parameters models in a discrete choice [51], [52], [53].

Utility functions must be tested with the variables in two stages. The first shall contain transportation mode parameters, while the second should test traveler related variables impact in utility function.

1) First Analysis: Modal Parameters

After applying Stated Preference Survey, with scenarios showing variations of transportation mode attributes, this should be tested at first. They usually represent the variables that best explain the transportation mode change.

2) Second Analysis: Traveler Parameters

According to the region, characteristics traveler may influence in transportation mode choice. Factors such as traveler income, gender, age, and who pays the ticket and other search features, depending on each region should be tested in order to know if any of them can interfere with demand.

3) Utility Function Definition

After all variables tests, the one that contains acceptable statistical values is the best utility function.
According to [55] the main parameters to be analyzed to validate the utility function are the rho-square values (pseudo determination coefficient - \(\rho \)) and the t test.

For rho value, according to [55] and [56] acceptable models are those with values above 0.2 and above 0.4 can be considered very good for analysis by multinomial logit model (on a scale between zero and one, where zero indicates no adjustment and it means a perfect fit). The rho-square value evaluates the quality of model fit.

T test value, used for variable coefficients analysis, determines whether the estimated coefficients for the variables are significant to the model or not. For more than 30 observations, values greater than 1.96 (in absolute value) indicate that the variable has a 95% confidence and a significant effect on the model, this variable should be retained in the model.

P-value or p standard deviation indicates data variation degree in relation to an average value. P accepted values, on a confidence level of 95%, should be less than 0.05.

In these generated tests, the variables coefficients signs (positive or negative) must be analyzed, indicating the utility value direction as variable value variation and must be consistent to the variation theoretically expected [57].

Thus, the best utility function, with parameters that best obtained Rho-square values (greater than 0.2), t test (greater than 1.96, in module) and p-value (less than 0.05 for 95% confidence) is selected and applied in order to represent demand transfer according to each study purpose.

E. STEP 05: TRANSFERREDDEMAND FORECAST

After variable test and model estimation, each alternative utility function should be performed in order to calculate the probability to select each transportation mode.

The resulting utility function should be applied to each group, prone to change transportation mode. For example, an intercity transportation that could be impacted by a regional railway is road transportation - carried out by buses, chartered buses, cars, etc. - air transportation and others that may exist in the region.

1) Existing Demand

It is necessary to know how many people will be transported by each transportation mode between regions, in other words, it is necessary to know the demand for each mode, and then what percentage of these are likely to go by for rail transportation, if implemented.

2) Tendency Rate Application

To use the model to estimate change tendency or transportation use probability, it is necessary to determine the characteristics to be taken into account in the existing demand group. For transportation mode characteristics, for example, new travel time, new price and also population age or income in which utility function is being applied (for example, if this variable is important for forecast).

Therefore, if the researcher knows the railways features that will be implemented, simply modify the variables related to transportation mode and find the change tendency. If the features are unknown, the same characteristics defined in the scenarios stated in Stated Preference Survey will be considered.

A percentage of use of each mode is found by the application of change tendency rate to the new transportation mode. If this percentage is applied to the existing demand, it is possible to determine how many people tend to remain in current transportation mode or to transfer to new transportation mode.

After variables and estimated model test, it is necessary to perform the utility function application for each alternative, in order to calculate the choice probability \(n \) to a given alternative \(i \). According to [39] this probability results indicate the percentage of users who will take each mode and consequently the tendency to transfer from a transportation modal to another.

Once region and volume of trips and passengers are determined, the last stage to forecast transferred demand is the application of transportation mode transfer rate, found in the researches, in current demand in the region.

According to the example given by [39], the transfer tendency rate from road transport to the railways (P1) and consequently the permanence rate in road transport (P2), is given by the following formula:

\[
P_1 = \frac{\exp^{\psi_1}}{\exp^{\psi_1} + \exp^{\psi_2}}; \quad P_2 = \frac{\exp^{\psi_2}}{\exp^{\psi_1} + \exp^{\psi_2}}
\]

(1)

In the author given example, regular bus users resulted in a tendency rate of 64.36% for railway and a 35.64% to remain in the current transportation mode option. Thus, once annual passenger volumes in a given region in known (50,423 passengers per year), transferred demand forecasted for railways resulted in 32,452 passengers per year [39].

IV. METHOD APPLICATION

In order to evaluate the procedure effectiveness, a region was chosen, where there is a real possibility to develop a regional rail passenger transport.

The Programa de Resgate do Transporte Ferroviário de Passageiros (Passenger Rail Transport Redemption Program), which selected 14 priority sections in Brazilian railroads to promote regional, social and tourist service, where the reference parameters set by the BNDES 2002 study are met: track sections with a length of up to 200 km; at least one city with more than 100,000 inhabitants; high idle capacity of cargo transportation; permanent way continuity [13].

Assuming that the areas of interest in this program were defined and characterized by studies carried out by BNDES and Transportation Ministry, the rail section between Campos dos Goytacazes – RJ and Macaé – RJ was chosen. It is 94 km long, belongs to Ferrovia Centro-Atlântica (FCA) railway, owned by VLI company group, with high idle capacity of cargo transportation.

A. Step 01: Initial research

In addition to regional characteristics, infrastructure conditions and available features of each transportation modes in this region were identified.
Between 2015 July 31 and August 9, available information about these types of trips between aforementioned cities, including costs - considering only one direction travel taking into account groups of workers and students.

For workers, the most common transportation mode is regular buses, chartered buses and cars. For students is offered free chartered bus service starting from Macaé to Campos, departing from Macaé city.

The charter bus service for workers departing from Macaé to Campos exists in two ways: when an employer provides transportation to employee and when the employee seeks for an existing bus company and carries out a "contract". This second option is the most interesting to study because it works like regular bus service. It is a regional specific case where each employee chooses a line that is considered better and books his or her seat on the bus.

Cost and travel time by car were calculated based on 2015 August price, in this region, and compared with travelers information that make this car trip. Knowing that the section between the two cities has 109 km and the fuel liter costs R$ 3.59, the toll between cities costs 3.80 and the average consumption of a small car is 14 Km / l, so the cost per trip is R$ 31.75. Maintenance costs and vehicle depreciation of the vehicle were not considered. The average travel time, informed by other travelers is 1 hour and 40 minutes. The highway that connects Campos to Macaé is BR-101, section currently managed by Autopista Fluminense S.A., and has most of its roadway in well maintained double lanes.

There are also other types of transport between these cities, as transport services using vans, hitchhikers, air transport between Campos and Macaé coast. However, as these services are not offered regularly and trips are conducted mainly by buses or cars, it was chosen to not include this information in other transportation modes.

The data were obtained through Autoviação 1001 company (provides intercity service between Campos dos Goytacazes - Macaé) website, and in contact with workers and students. Information regarding to services, including tariff rates, schedule, travel time and comfort standard are in Table I.

Table I: Transport Services Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Price R$</th>
<th>Attendance (bus per hour)</th>
<th>Attendance (bus per day)</th>
<th>Seats (per bus)</th>
<th>Travel time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>28,76</td>
<td>2.13</td>
<td>51</td>
<td>46</td>
<td>2:00</td>
</tr>
<tr>
<td>Charter Bus</td>
<td>26,65</td>
<td>Specific schedule</td>
<td>29</td>
<td>48</td>
<td>2:00</td>
</tr>
<tr>
<td>Students</td>
<td>31,75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>01:40</td>
</tr>
</tbody>
</table>

Bus types: conventional and conventional with air conditioning
Conventional: reclining chair e air conditioning
Conventional with air conditioning: arm chair, air conditioning

Table II: Workers and students Quality Factors

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Weight</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>0.316</td>
<td>0.142</td>
</tr>
<tr>
<td>Cost</td>
<td>0.210</td>
<td>0.191</td>
</tr>
<tr>
<td>Reliability</td>
<td>0.198</td>
<td>0.132</td>
</tr>
<tr>
<td>Time</td>
<td>0.126</td>
<td>0.085</td>
</tr>
<tr>
<td>Comfort</td>
<td>0.107</td>
<td>0.079</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.077</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Thus, it is observed that the most important factors in quantitative study were time and cost. Regarding to quality factors, there is an importance given to safety, coming next to reliability and comfort. It presents that the safety and reliability factors must maintain or improve existing standard and be served in the new system to be deployed. Due to the fact that these two qualitative factors are difficult to measure, comfort factor was selected to be included in Stated Preference Survey for comparative analysis.

C. STEP 03: STATE PREFERENCE SURVEY

1) Initial Research

The objective of this research is to support an estimated demand to be transferred when rail transport system for passengers is developed, with pendular movement trips, i.e. trips made between home x work and home x study, between Campos dos Goytacazes and Macaé cities.

Information about the region was presented in previous step, as a way to enable the first stage of this proposed methodology.

Data were initially defined taking into account all...
transportation modes; however, due to impracticability to conduct research with car travelers, it was used only in chartered buses.

2) Population Choice And Sample

The selected sample for Stated Preference Survey was routine travelers, such as workers and students, directly affected by railway to be implemented between Campos and Macaé cities. In this region, routine travelers usually travel by chartered bus. Thus, interviews were conducted on the chartered bus students (41 respondents) and employees (40 respondents), totaling 81 respondents.

3) Preparing the Quiz

As described above, questionnaire design starts by determining which factors are important to the region and by identifying research objective.

4) Definition of Attributes And Levels Of Choices

After Stage 2, cost, time and comfort factors have been identified as the most significant parameters in the region, which will be attributes for the scenarios. As existing services (buses) already have good levels of safety and reliability it is expected that the proposed railways have at least equal standard. Furthermore, comfort attribute is regarded as a new railway mode option, in order to reduce attribute variation and hence the number of cards to be analyzed.

Once attributes are known, the levels of each one should be defined. Since the region already have well established road and the highway is in good maintenance and operation conditions, it was considered that the region will not receive major investments, changes or improvements that may impact the estimated demand, if the railway project implementation occurs in short term. Thus, it was considered that transportation modes in this region are consolidated and for existing modes, attributes levels will not vary, as shown in Tables III and IV, thereby reducing the number of scenarios required for Stated Preferred Survey implementation.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Variable nature</th>
<th>Scenarios</th>
<th>Associated value levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>Quantitative</td>
<td>Real scenario</td>
<td>01h40min</td>
</tr>
<tr>
<td>Travel cost</td>
<td>Quantitative</td>
<td>Real scenario</td>
<td>R$ 31.75</td>
</tr>
<tr>
<td>Comfort standard</td>
<td>Qualitative</td>
<td>Real scenario</td>
<td>According to car comfort standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Variable nature</th>
<th>Scenarios</th>
<th>Associated value levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>Quantitative</td>
<td>Real scenario</td>
<td>02h00min</td>
</tr>
<tr>
<td>Travel cost</td>
<td>Quantitative</td>
<td>Real scenario</td>
<td>R$28.76</td>
</tr>
<tr>
<td>Comfort standard</td>
<td>Qualitative</td>
<td>Real scenario</td>
<td>Reclined armchair, air conditioning and toilet</td>
</tr>
</tbody>
</table>

Different levels of existing modes, railways must be analyzed on different levels according to each search attribute if there are no forecast improvements in level. Service levels and features were determined in accordance to existing services. Thus, the traveler can analyze what-if scenarios, but with services features that they already know, and can thus analyze the train offered service standard in a realistic way.

There were different levels, travel time from 20 minutes to more and less than the average time, comparing car and bus; considering travel costs, the rates were varied by 15% to more and less than car and bus average travel cost. For comfort levels, it is defined that the average standard is the existing standard, offered by existing buses that perform the route. The best standard is "executive" bus service, as shown in Table V:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Variable nature</th>
<th>Scenarios</th>
<th>Associated level values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>Quantitative</td>
<td>Best scenario</td>
<td>01h30min (-20 min)</td>
</tr>
<tr>
<td>Travel cost</td>
<td>Quantitative</td>
<td>Best scenario</td>
<td>R$ 25.72 (-15%)</td>
</tr>
<tr>
<td>Travel cost</td>
<td>Quantitative</td>
<td>Average scenario</td>
<td>R$ 30.26 (-15%)</td>
</tr>
<tr>
<td>Travel standard</td>
<td>Qualitative</td>
<td>Best scenario</td>
<td>Reclined armchair, legs rest, air conditioning e toilet</td>
</tr>
<tr>
<td>Travel standard</td>
<td>Qualitative</td>
<td>Average scenario</td>
<td>Reclined armchair, air conditioning e toilet</td>
</tr>
</tbody>
</table>

Regarding to standard comfort in railway, it was considered in the scenarios as an option for the traveler, as an additional cost, not requiring to expand the number of scenarios.

It was researched about different "class" charge, in Brazil and Europe, in order to define the percentage of additional cost for train standard comfort as Table VI.

<table>
<thead>
<tr>
<th>Service</th>
<th>Budget</th>
<th>1st class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Brazil</td>
<td>$79</td>
</tr>
<tr>
<td>Section</td>
<td>Curitiba - Morretes - Paranaguá</td>
<td>$16</td>
</tr>
<tr>
<td>Extensión</td>
<td>110 km</td>
<td>$24</td>
</tr>
<tr>
<td>Company</td>
<td>Serra Verde Express Ltda.</td>
<td>SNCF</td>
</tr>
<tr>
<td>Diferencia</td>
<td>25%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Sources: Available at each company’s website

From the research carried out about rates charged by companies providing rail services, it was decided to put an
extra charge of 30% over fare value to a higher standard of comfort. It must be said that this value only represents an estimative cost, in order to evaluate traveler change tendency, since a real implementation was not analyzed.

Being with all levels and attributes values set, scenarios were assumed, as shown in Table VII. It was decided to not apply the technique of removing all dominant and dominated alternatives, offering greater reliability to data collected in the interviews, resulting in nine scenarios.

TABLE VII
ATTRIBUTE COMBINATION

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Roadway</th>
<th>Railway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Car</td>
<td>Bus</td>
</tr>
<tr>
<td>Attributes</td>
<td>Cost</td>
<td>Time</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

5) **Scenarios presentation for respondents**

The scenarios presented to respondents was according to Table VIII:

TABLE VIII
SCENARIOS WITH ATTRIBUTES VALUES AND DEFINED LEVELS

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Roadway</th>
<th>Railway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Car</td>
<td>bus</td>
</tr>
<tr>
<td>Attributes</td>
<td>Cost (R)</td>
<td>Time (h)</td>
</tr>
<tr>
<td>1</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>2</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>3</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>4</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>5</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>6</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>7</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>8</td>
<td>31.75</td>
<td>01:40</td>
</tr>
<tr>
<td>9</td>
<td>31.75</td>
<td>01:40</td>
</tr>
</tbody>
</table>

Thus, a set of nine cards was presented to respondents, leaving them the choice of a transport option on each card to the daily trips.

6) **Research Process Definition**

The surveys were conducted face to face, as recommended by authors. Thus, the respondent can better understand the scenarios and how the choice procedure works, offering better accuracy and little information loss in collected data.

7) **Design and Survey Test**

For procedure testing purposes, at this stage a small group of respondents (4 people) belonging to research interest was interviewed. For larger, official surveys, research application should be extended to 6 to 12 people.

8) **Main Research and Data Collection**

The main survey was held between 2015 November 25th to December 05th, with 41 students who performed Macaé to Campos trip, on chartered buses, departing from Macaé city. The interviews took place in universities where students disembarked. Between 2015 December 01st to 05th, surveys were conducted with 40 work travelers who performed Campos to Macaé trip in chartered buses. The interviews took place in waiting embarkation points and within the charter bus.

Collected data by Stated Preference Survey included all the variables described in the methodology, and site special features.

Data were collected by the author, with face to face interviews in printed forms, marked with an X the chosen alternative transport users, after cards with scenarios were presented, generating a spreadsheet for information analysis by Biogeme Software, as defined previously.

D. **STEP 04: RESULTS ANALYSIS**

When utility functions in Software Biogeme were tested, transportation mode characteristics such as time and cost, were initially analyzed. Then travelers characteristics were tested: income, gender, age and who pays the passage, in order to know if any of these variables would be significant or not for the model, as Table IX:

TABLE IX
VARIABLES FOR EACH UTILITY FUNCTION

<table>
<thead>
<tr>
<th>Variables description</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Bus</td>
</tr>
<tr>
<td>Time travel time</td>
<td>β-Time</td>
</tr>
<tr>
<td>Cost travel</td>
<td>β-Cost</td>
</tr>
<tr>
<td>Income in class</td>
<td>β-Income</td>
</tr>
<tr>
<td>Gender</td>
<td>β-Gender</td>
</tr>
<tr>
<td>Age in classes</td>
<td>β-Age</td>
</tr>
</tbody>
</table>

1) **First Analysis: Modal Parameters**

Initially transportation mode variables were tested, in this case, time and cost based on the responses of 81 respondents, each responding to 9 scenarios.

The results obtained are shown in Table X:
variables to utility function, the results in analysis with coefficients values for all parameters were found equal to zero, reaffirming the significant effect for the model, with 95% confidence. P value is 0.175, which is not shown, as explained in Chapter 05. Therefore, the model does not have good fit.

Regarding to t test, all variable coefficients values were higher than 1.96 in magnitudes. So it means that all variables have a significant effect for the model, with 95% confidence.

P values for all parameters are found equal to zero.

2) Invalid Research Exclusion

Since the results were not satisfactory in relation to Rho-square, they were excluded from some interviews that may be considered invalid, according to [57], which considers this option when respondents answered only one transportation option, without changing the answer, i.e. when the respondents did not consider maximizing modal utility.

Thus, 6 interviews were excluded, reducing the sample to 75 people.

The values obtained from this analysis are shown in Table XI below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>T test</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC_CAR</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASC_BUS</td>
<td>1.61</td>
<td>6.85</td>
<td>0.00</td>
</tr>
<tr>
<td>ASC_TRNAIN</td>
<td>1.53</td>
<td>7.18</td>
<td>0.00</td>
</tr>
<tr>
<td>ASC_TIME</td>
<td>2.95</td>
<td>8.90</td>
<td>0.00</td>
</tr>
<tr>
<td>BETA_COST</td>
<td>-0.311</td>
<td>-10.63</td>
<td>0.00</td>
</tr>
<tr>
<td>BETA_TIME</td>
<td>-0.0616</td>
<td>-8.95</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Analyzing the results after parameter estimation using the software, it is observed that the rho-square value (ρ) is 0.267, indicating a good fit of the model.

P values for all parameters are found equal to zero.

4) Utility Function Definition

After all variable tests, in order to know what makes difference in the model and in utility function, it is concluded that the best utility function, it the one that contains acceptable statistical values, as stated earlier.

Thus, the best parameters values, with the best Rho-square, t-test and p-value results are presented in the following utility functions:

For car option:

\[U_{car} = -0.0616\cdot t - 0.311\cdot c \quad (2) \]

Where:
\[U_{car} = \text{Car utility} \]
\[t = \text{Time} \]
\[c = \text{Cost} \]

For chartered bus option:

\[U_{b} = 1.61 - 0.0616\cdot t - 0.311\cdot c \quad (3) \]

Where:
\[U_{b} = \text{Bus utility} \]
For conventional train option:

\[U_t = 1.53 - 0.0616 \times t - 0.311 \times c \] \hspace{1cm} (4)

Where:
- \(U_t \) = Conventional train utility
- \(t \) = Time
- \(c \) = Cost

For comfort train option:

\[U_{tc} = 2.95 - 0.0616 \times t - 0.311 \times c \] \hspace{1cm} (5)

Where:
- \(U_{tc} \) = Comfort train option
- \(t \) = Time
- \(c \) = Cost

E. STEP 05: TRANSFERRED DEMAND FORECAST

After variable and estimated model test, utility function application in performed for each regional transportation alternative.

It was researched transportation by chartered bus and the tendency to change the transportation mode change. 3 scenarios were analyzed, with variations in railway time and cost, as Table XIII shows below:

Table XII

NOTABLE SCENARIOS TO TRANSFERRED DEMAND FORECAST

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Railway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Bus</td>
</tr>
<tr>
<td>Attributes</td>
<td>Cost (R$)</td>
</tr>
<tr>
<td>Scenarios 1</td>
<td>31.75</td>
</tr>
<tr>
<td>Scenarios 2</td>
<td>41.75</td>
</tr>
<tr>
<td>Scenarios 3</td>
<td>51.75</td>
</tr>
</tbody>
</table>

In study it was considered only one transportation mode option as an example of the methodology application. However, in a real problem, it should be taken into account stated Preference Survey in all existing transport options that can be affected by regional rail transport.

1) **Existing Demand**

Since already searched in stage1, the existing demand for road transport are performed by chartered bus, with 1714 daily travelers population sample, as shown in Table XIV:

Table XIV

CHARTEERED BUS PASSENGERS

<table>
<thead>
<tr>
<th>Workers</th>
<th>Students</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus quantity</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>Available seats</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>Passengers</td>
<td>1392</td>
<td>322</td>
</tr>
<tr>
<td>Passengers (total)</td>
<td>1714</td>
<td></td>
</tr>
</tbody>
</table>

2) **Tendency Rate Application**

For utility functions application, it was considered time and cost characteristics, as scenarios presented previously in Tab. 13.

Considering scenario 01, tendency rate is applied in defined scenarios according to Equation 6, in order to estimate the transferred demand for standard train.

\[P_{tc} = \frac{\exp^{U_{tc}}}{\exp^{U_t} + \exp^{U_{tc}} + \exp^{U_o} + \exp^{U_{car}}} \] \hspace{1cm} (6)

With the application of tendency rate, the results obtained are shown in Table XV.

Table XV

TENDENCY RATES TO CHANGE TO STANDARD TRAIN

<table>
<thead>
<tr>
<th>Scenario 01</th>
<th>Scenario 02</th>
<th>Scenario 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ut</td>
<td>-12.01</td>
<td>-13.24</td>
</tr>
<tr>
<td>Ucar</td>
<td>-15.1</td>
<td>-15.1</td>
</tr>
<tr>
<td>Uo</td>
<td>-14.75</td>
<td>-14.75</td>
</tr>
<tr>
<td>Utc</td>
<td>-12.99</td>
<td>-14.22</td>
</tr>
<tr>
<td>Results</td>
<td>0.672636</td>
<td>0.569361</td>
</tr>
</tbody>
</table>

Thus, considering transportation mode conditions in the above scenarios, 67.26% of chartered bus demand are likely to be transferred to the train, i.e. among 1714 people traveling from one city to another by chartered bus, 1152 people would prefer the railway option. If the travel time increases 20 minutes, 975 people would transfer to train option, i.e. 56.94% of total demand. If the ticket cost increase by 15% then 1008 people would transfer to the train option, i.e. 58.81% of the travelers.

Tendency rate is then applied, according to EQ. 6, in defined scenarios in order to estimate the transferred demand to train with additional comfort.

\[P_{tc} = \frac{\exp^{U_{tc}}}{\exp^{U_{tc}} + \exp^{U_t} + \exp^{U_{tc}} + \exp^{U_{car}}} \] \hspace{1cm} (7)

Tendency rate application results are shown in Table XVI:

Table XVI

TRAIN WITH ADDITIONAL COMFORT TENDENCY RATE

<table>
<thead>
<tr>
<th>Scenario 01</th>
<th>Scenario 02</th>
<th>Scenario 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ut</td>
<td>-12.01</td>
<td>-13.24</td>
</tr>
<tr>
<td>Ucar</td>
<td>-15.1</td>
<td>-15.1</td>
</tr>
<tr>
<td>Uo</td>
<td>-14.75</td>
<td>-14.75</td>
</tr>
<tr>
<td>Utc</td>
<td>-12.99</td>
<td>-14.22</td>
</tr>
<tr>
<td>Results</td>
<td>0.252448</td>
<td>0.213687</td>
</tr>
</tbody>
</table>

Thus, considering transportation mode conditions presented in the scenarios above, 25.24% of chartered bus demand are likely to be transferred to train option with additional comfort, i.e. among 1714 people traveling from one city to the another by chartered bus, 432 people would prefer the railway option with greater comfort. If travel time increases in 20 minutes,
366 people would transfer to the train option, i.e. 21.37% of total demand. If the rate increases by 15%, only 246 people would transfer to the train with additional comfort, i.e. 14.36% of travelers.

V. RESULTS AND DISCUSSION

Analyzing transferred demand forecast methodology application, it was observed that the second stage was able to offer the research objectified regional feature when travelers chose the item "comfort" as important for transportation mode decision-making.

Regarding to Stated Preference Survey, in the questionnaires, users who have tickets paid by companies or third parties may have difficulty understanding the presented hypothetical scenarios and tended not to evaluate the scenarios one by one, marking only the option that best suits him or her, making unrepresentative results for the utility function.

Regarding to scenarios and attributes, all were well understood by respondents. It was noticed that the train alternative with added comfort was valid, avoiding the need to have a greater number of scenarios and enabling more clear analysis to the user. Thus, data collection for use in indicated program using logit Multinomial model in Biogeme software was carried out without difficulty and the program was easy to use and understand.

On regional application and considering Brazilian economic scenario, there was a considerable variation in economy since the beginning of the study in 2014 to the end of data collection in 2015 and 2016 with process completion, when high unemployment level are observed. Thus, the dependence between the cities weakened job generation, directly impacting on demand between cities.

Future work could be extended to researches involving all groups of travelers between regions - workers, visitors, students - even if not routine, also including other ways to identify more accurately the percentage of travelers who would transfer to rail transportation. It is suggested also to conduce similar studies considering induced demands, different questionnaires for each group of passengers analysis, considering just the way it is already used by passenger and transport to be deployed; they could be tested in more logit models in order to know whether this model is ideal to estimate transferred demand;

It is proposed that the methodology applications could be carried out in different regions, identifying variables consistency and also demand check after railway implementation, in order to validate and reassess the proposed process.

Also, the inclusion of economic variables could be testes, based on GDP, employment and unemployment rates, among others, to include in this methodology an economic stability evaluation and how it can affect transferred demand.

REFERENCES

[51] M. Bierlaire BIOGEME: A free package for the estimation of
Transportation Research Conference, Ascona, Switzerland.
[52] M. Bierlaire BisonBiogene 2.4: estimating a first model [Online]
Available: http://bionbiogene.ep.ch
West Sussex: John Wiley & Sons Ltd., 2001.
[55] M. Ben-Akiva, S. Lerman Discrete choice analysis: theory and
application to travel demand. Cambridge University Press.
[56] L. R. Deus; S. P. Sanches Influença da forma urbana sobre o
comportamento de viagens urbanas. Caminhos de Geografia, v. 10,
n. 29, 2009.
declarada para a estimativa do valor do tempo de viagem de
motoristas em uma escolha entre rotas rodoviárias pedagiadas e
não pedagiadas. 185 f. Dissertação (Mestrado) - Curso de
Engenharia de Transportes, Departamento de Engenharia de
Transportes, Universidade de São Paulo. São Paulo, São Paulo,
183816/.

Swellen Mendonça Pessanha was born in Campos
dos Goytacazes city, RJ, Brazil, in 1989. Graduated in
Architecture and Urbanism from Federal
Fluminense Institute (IFF) in 2012. Currently, she is
pursuing the M.S. degree in Transportation
Engineering at Military Institute of Engineering
(IME), Rio de Janeiro, Rio de Janeiro, Brazil.
She has experience in Architecture, Urban Planning,
Construction Technologies and Transportation
Engineering, mainly in demand’s behavior,
Transferred Demand, Passenger Trains systems and
Stated and Revealed Preference Survey.

Cynthia Vargas Cuchava Rocha, was born in Itajaí
city, Brazil in 1991. Graduated in Civil Engineering
from the University of Vale do Itajaí - Santa
Catarina state, Brazil (2013) and Master in
Transportation Engineering from IME (2016). She
has experience in civil construction through
development and execution of projects
(architectural, sanitary, electrical, structural) works
monitoring of Compliance Projects Monitoring the
disciplines: sociology and urban planning,
architecture, design I and II, and transport
engineering area has experience in urban mobility
for freight transport.

Simone Lie Issomura was born in São Paulo city,
Brazil, in 1981. She received the B.S. degree in civil
engineering from State University of Campinas
(UNICAMP), Campinas, São Paulo, Brazil, in 2004;
quality and value engineering specialization degree
from São Paulo University (USP), São Paulo, São
Paulo, Brazil, in 2007; railway engineering
specialization degree from Minas Gerais Pontifical
Catholic University (PUC Minas), Belo Horizonte,
Minas Gerais, Brazil, in 2008 and MBA degree from
Getúlio Vargas Foundation (FGV), São Paulo, São
Paulo, Brazil, in 2009. She is currently working pursuing the M.S. degree
in transportation engineering at Military Institute of Engineering (IME), Rio de
Janeiro, Rio de Janeiro, Brazil.
From 2005 to 2007 she has worked as Civil Engineer at São Paulo Subway
Company and since 2008 she is working as Permanent Way Engineer at a
Brazilian mining company in Vitoria, Espírito Santo, Brazil.

Vania Barcellos Gouvea Campos graduated in
architecture at Rio de Janeiro Federal University
(UFRJ), Rio de Janeiro, Brazil, in 1978. She
received the master degree in transportation
engineering from Military Institute of Engineering
(IME), Rio de Janeiro, Rio de Janeiro, Brazil, in
1980; the Ph.D. degree in production engineering
from UFRJ, Rio de Janeiro, Brazil, in 1997 and the
PostDoc from Minho University, Minho, Portugal, in
2005.
From 1981 to 1982 she worked as Architect at
Petropolis city hall. From 1982 to 1984 she worked as Planning Assessor at
Sermapi S.A and from 1986 she has been working as a Professor at IME, Rio
de Janeiro, Rio de Janeiro, Brazil. Her research interest includes: cargo and
passenger urban transportation, traffic control, mobility, land use and
transportation logistics.

Renata Albergaria de Mello Bandeira graduated
in fortification and construction engineering at
Military Institute of Engineering (IME), Rio de
Janeiro, Brazil, in 2002. She received the master
degree in production engineering from Rio Grande
do Sul Federal University (UFRGS), Rio Grande do
Sul, Brazil, in 2006 and the Ph.D. degree in
administration from UFRGS, Rio Grande do Sul,
Brazil, in 2009.
From 2009 to 2010 she worked as a Professor at
UFRGS, from 2010 to 2011 she worked as Professor
at TecBrasil and since 2011 she has been working as
a Professor at IME, Rio de Janeiro, Rio de Janeiro, Brazil. Her research
interest includes: logistics, supply chain management, logistics outsourcing,
project management and statistics.